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ABSTRACT 
Automated program transformation holds promise for a variety of 
software life cycle endeavors, particularly where the size of legacy 
systems makes code analysis, re-engineering, and evolution very 
difficult and expensive.  But constructing transformation tools 
that handle the full generality of modern languages and that scale 
to very large applications is itself a painstaking and expensive 
process.  This cost can be managed by developing a common 
transformation system infrastructure that is re-used by an array of 
derived tools that each address specific tasks, thus leveraging the 
infrastructure cost over the various tools. 

This talk describes DMS1, a practical, commercial program 
analysis and transformation system, and discusses how its 
infrastructure was employed to construct the Boeing Migration 
Tool (BMT), a custom component modernization application 
being applied to a large C++ industrial avionics system.  The 
BMT automatically transforms components developed under a 
1990's era component style to a more modern CORBA-like 
component framework, preserving functionality.  We describe the 
DMS infrastructure and the BMT application itself, illustrating 
some of the kinds of syntheses and transformations required and 
some of the issues involved with transforming industrial C++ 
code.  We also discuss the development experience, including the 
strategies for approaching the scale of the migration, the style of 
interaction that evolved between the tool-building company and 
its industrial customer, and how the project adapted to changing 
requirements.   

Categories and Subject Descriptors 
D.1.2 [Programming Techniques]: Automatic Programming – 
Automating analysis of algorithms, Program Modification, 
Program Synthesis, Program Transformations. 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
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Computer-aided software engineering (CASE). 
D.2.7 [Software Engineering]: Distribution, Maintenance and 
Enhancement – Restructuring, reverse engineering, and 
reengineering. D.2.13 [Software Engineering]: Reusable 
Software – domain engineering. D.3.4 [Programming 
Languages]: Processors – Parsing, Translator writing systems 
and compiler generators, Code Generation.   

General Terms 
Algorithms, Management, Design, Economics, Languages 

Keywords 
Software transformation, software analysis, migration, component 
architectures, legacy systems, C++, compilers, re-engineering, 
abstract syntax trees, patterns, rewrite rules. 

1. The DMS Software Re-Engineering Toolkit  
DMS provides an infrastructure for software transformation based 
on deep semantic understanding of programs.  Programs are 
internalized via DMS-generated parsers that exist for virtually all 
conventional languages.  Analyses and manipulations are 
performed on abstract syntax tree (AST) representations of the 
programs, and transformed programs are printed with 
prettyprinters for the appropriate languages. 

The Toolkit has been under development for 9 years, and is 
capable of defining multiple, arbitrary specification and 
implementation languages (domains) and can apply analyses and 
transformations to source code written in any combination of 
defined domains.  Transformations may be either written as 
procedural code or expressed as source-to-source rewrite rules in 
an enriched syntax for the defined domains.  Rewrite rules may be 
optionally qualified by arbitrary semantic conditions. 

The DMS Toolkit can be considered as extremely generalized 
compiler technology.  It presently includes the following tightly 
integrated facilities:  

• A hypergraph foundation for capturing program 
representations (e.g., ASTs, flow graphs, etc.) in a form 
convenient for processing.  

• Complete interfaces for procedurally manipulating general 
hypergraphs and ASTs. 



• A means for defining language syntax and deriving parsers and 
prettyprinters for arbitrary context free languages to convert 
domain instances (e.g. source code) to and from internal forms. 

• Support for defining and updating arbitrary namespaces 
containing name/type/location information with arbitrary 
scoping rules, and support for name and type analysis. 

• An attribute evaluation system for encoding arbitrary analyses 
over ASTs. 

• An AST-to-AST rewriting engine that understands algebraic 
properties (e.g., associativity and commutativity). 

• The ability to specify and apply source-to-source program 
transformations based on language syntax. Such transforms can 
operate within a language or across language boundaries.   

• A procedural framework for connecting these pieces and 
adding arbitrary code. 

The DMS architecture is illustrated above.  Notice that the 
infrastructure supports multiple domain notations (source code 
languages), so that multiple languages can be handled or 
generated by a given tool. 

We are presently implementing a general scheme for capturing 
arbitrary control flow graphs (including exceptions, continuations, 
parallelism and asynchrony) and carrying out data flow analyses 
across such graphs.  Our goal is to build scalable infrastructure. 
One aspect is support for computational scale, which is addressed 
by implementing DMS in a parallel programming language, 
PARLANSE [1], enabling DMS to run on commodity x86 
symmetric-multiprocessing workstations. 

C++ is among the many domains implemented within DMS, and 
the system contains complete preprocessors, parsers, name and 
type resolvers, and prettyprinters for both the ANSI and Visual 
C++ 6.0 dialects.  Unlike a compiler preprocessor, the DMS C++ 
preprocessor preserves both the original form and expanded 
manifestation of the directives within the AST so that programs 
can be manipulated, transformed, and printed with their 
preprocessor directives preserved, even in the presence of 
preprocessor conditionals. 

DMS as presently constituted has been used for a variety of large 
scale commercial activities, including cross-platform migrations, 
domain-specific code generation, and construction of a variety of 
conventional software engineering tools implementing tasks such 
as dead and clone code elimination, test code coverage, execution 
profiling, source code browsing, and static metrics analysis. 

A more complete discussion of DMS is presented in [2].  DMS-
based tools are described on the Semantic Designs web page [3].  

2. THE BOEING MIGRATION TOOL  
Boeing's Bold Stroke avionics component software architecture is 
based on the best practices of the mid 1990's [4].  Component 
technology has since matured, and the CORBA component model 
has emerged as a standard.  The U.S. Government’s DARPA-
PCES program and OMG are sponsoring development of a 
CORBA-inspired standard real time embedded system component 
model [5], which offers standardization, superior encapsulation 
and interfaces for ongoing development of distributed, real time, 
embedded systems such as Bold Stroke.  This standardization also 
provides a base for tools for design and analysis of such systems.  
Boeing wishes to upgrade its software to a more modern 
architecture, a proprietary CCMRT variant known as PRiSm.  The 
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task of converting components is straightforward and now well 
understood, but a great deal of detail must be managed with 
rigorous regularity and completeness.  Since Bold Stroke is 
implemented in C++, the complexity of the language and its 
preprocessor requires careful attention to semantic detail.  With 
thousands of legacy components now fielded, the sheer size of the 
migration task is an extraordinary barrier to success.  With the use 
of C++ libraries, approximately 150,000 lines of C++ source 
contributes to a typical component, and a sound understanding of 
the component's name space requires comprehension of all this 
code.  

To deal with the scale, semantic sensitivity, and regularity issues, 
DARPA, Boeing, and Semantic Designs (SD) decided on an 
automated approach to component migration using a DMS-based 
tool.  DMS, with its C++ front end complete with name and type 
resolution, its unique C++ preprocessor, which allows both the 
expansion (for understanding) and the preservation (for source 
code re-creation) of preprocessor directives, its transformation 
capability, and its scalability, was uniquely qualified as a substrate 
for constructing a migration tool. Automating the migration 
process assures regularity of the transformation across all 
components and allows the examination of transformation 
correctness to focus primarily on the general transforms rather 
than on particular examples that may be idiosyncratic.  

The legacy component structure was essentially flat, with all the 
methods contributing to a component collected in a very few 
classes (often just one), each defined with .h and .cpp files.  One 
principal piece of the migration involves factoring a component 
into facets, which would form distinct classes reflecting different 
areas of concern.  Some facets encapsulate various functional 
aspects and are specific to each component. Others capture 
protocols for inter-component communication; while these 
protocols are common in style among all components, code 
specifics vary with the components' functional interfaces.  

Factoring a component into functional facets requires human 
understanding. Essentially, the legacy interface methods must be 
sorted into bins corresponding to the facets, and indicative names 
given to the new facet classes.  To provide a clean specification 
facility for the Boeing engineers using the BMT, we developed a 
simple facet specification language.  For each component, an 
engineer names the facets and uniquely identifies which methods 
(via simple name, qualified name, or signature if necessary) 
comprise its interface.  The bulk of the migration engineer's task is 
the formulation of facet specifications for all the components to be 
migrated.  

The BMT translates components one at a time.  Input consists of 
the source code, the facet specification for the component being 
translated, and the facet specifications of all components with 
which it communicates, plus a few bookkeeping directives.  
Conversion-related input is succinct. 

The facet language itself is defined as a DMS domain, allowing 
DMS to automatically generate a parser from its grammar.  (The 
BMT therefore is a multi-domain application, employing both 
Visual C++ and the facet language.) A DMS-based attribute 
evaluator over the facet domain traverses the facet specifications' 
ASTs and assembles a database of facts for use during component 
transformation.  

After processing the facet specifications, the BMT parses and 
does full name and type resolution on the C++ source code base, 

including files included by any of the components in play.  The 
name resolver constructs a symbol table for the entire base, 
allowing lookup of identifiers and methods with respect to any 
lexical scope within the source code base.  Only by internalizing 
the entire problem in this manner can symbol lookups and the 
transformations depending on them be guaranteed sound.  This is 
one key point that defeats scripting languages as C++ 
transformers.  Three particular transformations typify what the 
BMT does to perform the component migration: 

• New classes for facets and their interfaces are generated based 
on the facet specifications.  One incarnation of the BMT 
generates a base class for each facet that is essentially a 
standard form.  A "wrapper" class is also generated, inheriting 
from the facet, and containing one method for each method in 
the functional facet's interface.  The wrapper methods simply 
relay calls to the appropriate method in the component's core 
classes.  Constructing the wrapper methods involves 
replicating each method's header and utilizing its arguments in 
the relayed call.  Appropriate #include directives must be 
generated for access to entities incorporated for these purposes, 
as well as for standard component infrastructure.  A nest of 
constructor patterns expressed in the DMS pattern language are 
used to pull the pieces together into a class definition.  After 
constructing the facets and wrappers, the BMT must then 
transform all the legacy code calls to any of the facets' 
methods, redirecting original method calls to the core class to 
instead call the appropriate wrapper method via newly declared 
pointers.  This is done using source-to-source transforms with 
conditionals to focus their applicability. 

• Newly generated "receptacle" classes provide an image of the 
outgoing interface of a component to the other components 
whose methods it calls. Since a particular component’s 
connectivity to other components is not known at compile 
time, the receptacles provide a wiring harness through which 
dynamic configuration code can connect instances into a flight 
configuration.  Constructing the receptacles involves searching 
all of a component's classes for outgoing calls and generating 
code to serve each connection accordingly.  

• Event sinks are classes that represent an entry point through 
which an event service can deliver its product.  Since the code 
for event processing already exists in the legacy classes 
(though its location is not specified to the BMT), synthesizing 
event sinks involves having the BMT identify idiomatic legacy 
code by matching against DMS patterns for those idioms.  
Code thus identified is moved into the new event sink class, 
which is synthesized with a framework of constructor patterns. 
Definitions and #include directives supporting the moved 
code must also be constructed in the event sink class. 

3. EXPERIENCE 
The project is still in progress, but we can make a number of 
observations.  

The customer, Boeing, has extensive expertise in avionics and 
component engineering, but only a nascent appreciation of 
transformation technology. The tool builder, Semantic Designs, 
understands transformation and the mechanized semantics of C++, 
but had only cursory prior understanding of CORBA component 
technology and avionics.  Furthermore, customer and tool builder 
are geographically separated.  



As it turns out, this all had its benefits, leading to a clean factoring 
of roles that forced clarity at the operational boundaries. Once a 
basic understanding of the component structure was 
communicated, Boeing chose a particular component to use as a 
foil for advancing the work. They performed a hand conversion 
which served to force details into consideration and helped them 
solidify the target via experimentation, while giving SD a concrete 
image of the target and a benchmark for progress.  Being 
unburdened by application knowledge, SD was able to ask 
questions that focused purely on translation issues, removing from 
the conversion endeavor the temptation to make application-
related adjustments that could add instability.  

With the task cleanly factored, a mode of electronic 
communication evolved that reduced the need for travel and staff 
commitments to meetings.  The hand-translated component was 
used for periodic benchmarking and evaluation, and its 
elaboration served to communicate requirements changes.  SD 
periodically shipped the results of the auto-conversion and 
versions of the tool itself to Boeing for evaluation, and Boeing 
made suggestions with respect to the benchmark results.  This 
spared Boeing engineers the difficulty of evaluating transforms 
abstractly.  While they developed an appreciation for the 
capabilities and limits of the technology, they did not need to 
spend time learning to converse in terms of the transformation 
rules themselves.  

SD had to do its development without access to Boeing's sensitive 
proprietary code base.  Boeing partly finessed this potential 
problem by using a non-sensitive trial component.  But lack of 
access to the full source code base forced the tool builders to 
prepare for worst case scenarios of what C++ features may be 
encountered by the BMT.  This had the desirable effect of forcing 
development of our C++ preprocessing infrastructure to handle 
the cross product of preprocessing conditionals, templates, and 
macros.  These improvements both harden the tool against 
unanticipated stress and strengthen the DMS infrastructure for 
future projects.  

Various factors forced major changes of direction during the 
project. Initially, the target component model was essentially a 
pure CORBA structure, since the details of the real-time avionics 
variant had not thoroughly communicated to SD.  A partial 
prototype translation was implemented on this basis.  Then came a 
midstream decision to move first to a wrapper approach, which 
would have resulted in throwing away a lot of hand-translated 
code, had that been the mode of operation.  The impact on the 
BMT approach was quite limited, though, since the change 
required only adjustments to the generative patterns and some 
organizational code, not to the tool structure as a whole.  
Likewise, a switch back to the fully defined PRiSm component 
model is anticipated at a date which would have come too late in a 
hand translation effort, but which the automatic conversion can 
accommodate.  Re-tooling the BMT will require less effort, and 
once this is done, all components can be re-translated as easily as 
one. 

Essentially, the role of SD in this effort was to develop a custom 
migration tool on top of our DMS infrastructure, while Boeing’s 
task was to provide requirements and become the end user of the 
tool.  There is no reason in principle that Boeing could not have 
been the tool developer.  We encourage our users to consider 
taking our infrastructure and classes we offer, and learning to 
build tools themselves.  The experience gained in building one 

tool leverages quickly into the ability to create new tools when the 
need arises, with the long-term effect being the incorporation of 
transformational methods into the users’ software development 
culture.  For an organization that requires only a single DMS-
based application, the cost of training and learning by hard 
experience are not justified.  SD’s experienced engineers can 
deliver a first product more quickly.  But DMS is designed to be 
distributed as a product, and we encourage organizations whose 
applications are so strictly proprietary that outsourced tool 
development is inappropriate and organizations which can 
envision the long-term benefits of adopting the DMS custom tool 
development methodology to take the toolkit and train to become 
DMS engineers.  Academic research environments also seem 
particular open to this endeavor, as they can leverage the DMS 
infrastructure to allow researchers to focus directly on their 
problems of interest rather than building and maintaining a tool-
building environment or hacking tools together from inadequate 
pieces. 

A few over-arching observations apply to this and other mass 
transformation projects: 

• Mass migrations are best not mingled with changes in business 
logic, optimization, or other software enhancements.  
Entangling tasks muddies requirements, induces extra 
interaction between tool builders and application specialists, 
and makes evaluation difficult, at the expense of time and 
money. Related tasks may be considered independently, 
applying new transformation tools if appropriate. 

• Automating a transformation task helps deal with changing 
requirements.  Modifying a few rewrite rules, constructive 
patterns, and organizational code is far easier and results in a 
more consistent product than revising a mass of hand-
translated code. Changes implemented in the tool may manifest 
in all previously migrated code by simply re-running the 
modified tool on the original sources.  This allows blending the 
requirements definition timeframe into the implementation 
timeframe, which can significantly shorten the whole project. 

• Cleanly factoring a migration task between tool builders and 
application specialists allows proprietary information to 
remain within the customer’s organization while forcing tool 
builders toward optimal generality.   Lack of access to 
proprietary sources, or in general lack of full visibility into a 
customer’s project induces transformation engineers to 
anticipate problems and confront them in advance by building 
robust tools.  Surprises therefore tend to be less overwhelming. 

• Automated transformation allows the code base to evolve 
independently during the migration tool development effort.  
To get a final product, the tool may be re-run on the most 
recent source code base at the end of development.  There is no 
need for parallel maintenance of both the fielded system and 
the system being migrated. 

• Using a mature infrastructure makes the construction of 
transformation-based tools not just economically viable, but 
advantageous. Not doing this is infeasible. Language front 
ends and analyzers, transformation engines, and other 
components are all very significant pieces of software. The 
BMT contains approximately 1.5 million lines of source code, 
but most is infrastructure.  Only 11K lines of code are BMT-
specific.  Furthermore, off-the-shelf components are 
inadequate to the task. For example, lex and yacc do not 



produce ASTs that are suitable for manipulation.  Only a 
common parsing infrastructure can produce AST structures that 
allow a rewrite engine and code generating infrastructure to 
function over arbitrary domain languages and combinations of 
languages. 

• Customers can become transformation tool builders. There is 
significant learning curve in building transformation-based 
tools.  A customer seeking a single tool can save money by 
letting transformation specialists build it.  But transformation 
methods are well-suited to a range of software life cycle tasks, 
and customers can be trained to build tools themselves and 
incorporate the technology into their operation with great 
benefit and cost savings. 

4. FUTURE DIRECTIONS 
The PRiSm or CORBA component technologies impose 
computational overhead as service requests are routed through 
several new layers of component communication protocol.  A 
DMS-based approach to partial evaluation could relieve this 
overhead.  Essentially, the extra layers exist to provide separation 
of concern in design and coding and to provide plug-and-play 
capability at configuration time.  With semantic awareness of the 
component wiring present in the source code, though, a DMS tool 
could be developed to statically evaluate the various 
communication indirections, thus sparing that run-time overhead.  

In this highly performance-sensitive environment, the effort could 
be well justified. 
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